203
Libro para el maestro
Propósito de la actividad.
Que los
alumnos practiquen el manejo de
ciertas técnicas. Si lo cree necesario,
usted puede sugerir otros ejercicios
adicionales.
Posibles dificultades.
Algunos
alumnos podrían tener problemas para
decidir hacia qué dirección marcar el
ángulo cada vez que deben trazarlo
en el extremo de un segmento. Usted
podría advertir a los alumnos de esta
dificultad trazando una de las figuras
en el pizarrón y preguntando en cada
caso hacia dónde debe trazar cada
uno de los ángulos, y ocasionalmente
hacerlo de manera errónea para que
los mismos alumnos se percaten y
comenten esa dificultad.
Sugerencia didáctica.
Una vez que
lean y comenten lo enunciado puede
solicitar a los alumnos que den otros
ejemplos diferentes al del pentágono.
Es importante señalar que, al igual que
con los ángulos centrales, esta técnica
únicamente funciona para polígonos
regulares cuyo numero de lados es un
divisor de
360
.
Subraye con los alumnos que el dato
de número de lados es esencial para el
trazo: permite obtener la medida del
ángulo central y, como consecuencia,
la del ángulo interior.
Sugerencia didáctica.
Otra forma
de recuperar la información del
recuadro es pedirles que escriban en
el cuaderno las ideas fundamentales
con sus propias palabras y que den
otros ejemplos. Algunos de esos textos
pueden leerse a todo el grupo.
167
MATEMÁTICAS
I
•
¿Algún equipo del grupo utilizó este procedimiento para trazar el octágono regu-
lar del mosaico?
V.
Utiliza el procedimiento de la actividad IV para trazar en tu cuaderno los siguientes
polígonos regulares:
Polígono regular
Medida del lado
Triángulo equilátero
6
cm
Cuadrado
8
cm
Hexágono
3
cm
Decágono
2
cm
Paso 3.
En cada extremo del segmento nuevamente se
traza un ángulo de
108º
cuyos lados midan
2
cm.
Paso 4.
Se continúa así hasta completar el pentágono
regular.
A lo que llegamos
Conociendo la medida del ángulo interior
es posible trazar polígonos regulares cuyos
lados tengan una medida determinada.
Una manera de calcular el ángulo interior
de un polígono regular es buscando el
suplemento del ángulo central.
Ángulo central
360°
entre
5
es
72°.
Ángulo interior
180°
− 72
° = 108°.
5
2